Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Author(s): 

Issue Info: 
  • Year: 

    2019
  • Volume: 

    52
  • Issue: 

    2
  • Pages: 

    1089-1106
Measures: 
  • Citations: 

    1
  • Views: 

    90
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 90

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2020
  • Volume: 

    7
  • Issue: 

    1
  • Pages: 

    153-164
Measures: 
  • Citations: 

    0
  • Views: 

    775
  • Downloads: 

    0
Abstract: 

Semantic Image Segmentation based on Convolutional Neural Networks (CNNs) is one of the main approaches in computer vision area. In convolutional neural network-based approaches, a pre-trained CNN which is trained on the large Image classification datasets is generally used as a backend to extract features (Image descriptors) from the Images. Whereas, the special size of output features from CNN backends are smaller than the input Images, by stacking multiple deconvolutional layers to the last layer of backend network, the dimension of output will be the same as the input Image. Segmentation using local Image descriptors without involving relationships between these local descriptors yield weak and uneven Segmentation results. Inspired by these observations, in this research we propose Context-Aware Features (CAF) unit. CAF unit generate Image-level features using local-Image descriptors. This unit can be integrated into different Semantic Image Segmentation architectures. In this study, by adding the proposed CAF unit to the Fully Convolutional Network (FCN) and DeepLab-v3-plus base architectures, the FCN-CAF and DeepLab-v3-plus-CAF architectures are proposed respectively. PASCAL VOC2012 datasets have been used to train the proposed architectures. Experimental results show that the proposed architectures have 2. 7% and 1. 81% accuracy improvement (mIoU) compared to the related basic architectures, respectively.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 775

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Issue Info: 
  • Year: 

    2018
  • Volume: 

    40
  • Issue: 

    4
  • Pages: 

    834-848
Measures: 
  • Citations: 

    1
  • Views: 

    90
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 90

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    1387
  • Volume: 

    14
Measures: 
  • Views: 

    412
  • Downloads: 

    0
Abstract: 

در این مقاله روشی جدید برای ناحیه بندی تصاویر سطح خاکستری ارایه می کنیم. در این روش ابتدا همبستگی بین روشنایی پیکسل های تصویر و همسایگانشان را به صورت هیستوگرامی دو بعدی در نظر می گیریم. با آنالیز تابع بدست آمده از قطر اصلی این هیستوگرام می توان نقاط آستانه مناسب برای ناحیه بندی را مشخص کرد. با استفاده از ترکیب توابع گوسی قطر اصلی تابع هیستوگرام را مدل می کنیم پارامترهای مربوط به تابع گوسی به کار رفته دراین مدل را به کمک الگوریتم بهینه سازی PSO محاسبه می کنیم. آستانه های روشنایی مناسب برای تفکیک نواحی با توجه به مدل ترکیب گوسی ها بدست می آید. سپس روشنایی تمام پیکسل هایی را که سطح روشنایی آنها در محدوده دو آستانه متوالی می باشد را با آن سطح روشنایی که بیشترین تعداد پیکسل ها را به خود اختصاص داده است جایگزین می کنیم. نتایج حاصله برتری روش پیشنهادی را مشان می دهند.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 412

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Issue Info: 
  • Year: 

    2018
  • Volume: 

    6
  • Issue: 

    3
  • Pages: 

    128-135
Measures: 
  • Citations: 

    0
  • Views: 

    247
  • Downloads: 

    111
Abstract: 

Recent researches on pixel-wise Semantic Segmentation use deep neural networks to improve accuracy and speed of these networks in order to increase the efficiency in practical applications such as automatic driving. These approaches have used deep architecture to predict pixel tags, but the obtained results seem to be undesirable. The reason for these unacceptable results is mainly due to the existence of max pooling operators, which reduces the resolution of the feature maps. In this paper, we present a convolutional neural network composed of encoder-decoder segments based on successful SegNet network. The encoder section has a depth of 2, which in the first part has 5 convolutional layers, in which each layer has 64 filters with dimensions of 3×3. In the decoding section, the dimensions of the decoding filters are adjusted according to the convolutions used at each step of the encoding. So, at each step, 64 filters with the size of 3×3 are used for coding where the weights of these filters are adjusted by network training and adapted to the educational data. Due to having the low depth of 2, and the low number of parameters in proposed network, the speed and the accuracy improve compared to the popular networks such as SegNet and DeepLab. For the CamVid dataset, after a total of 60, 000 iterations, we obtain the 91% for global accuracy, which indicates improvements in the efficiency of proposed method.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 247

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 111 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Issue Info: 
  • Year: 

    2024
  • Volume: 

    303
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    1
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2017
  • Volume: 

    3
  • Issue: 

    2
  • Pages: 

    144-149
Measures: 
  • Citations: 

    0
  • Views: 

    223
  • Downloads: 

    80
Keywords: 
Abstract: 

Image Segmentation is a fundamental approach in the field of Image processing and based on user’ sapplication. This paper propose an original and simple Segmentation strategy based on the EM approach thatresolves many informatics problems about hyperspectral Images which are observed by airborne sensors. In afirst step, to simplify the input color textured Image into a color Image without texture. The final Segmentationis simply achieved by a spatially color Segmentation using feature vector with the set of color valuescontained around the pixel to be classified with some mathematical equations. The spatial constraint allowstaking into account the inherent spatial relationships of any Image and its color. This approach provideseffective PSNR for the segmented Image. These results have the better performance as the segmented Imagesare compared with Watershed & Region Growing Algorithm and provide effective Segmentation for theSpectral Images & Medical Images.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 223

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 80 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    1998
  • Volume: 

    22
  • Issue: 

    3
  • Pages: 

    381-388
Measures: 
  • Citations: 

    0
  • Views: 

    199
  • Downloads: 

    0
Abstract: 

In this paper the method used for Image compression is based on successive Image Segmentation. The Image to be compressed is segmented into smaller regions and this process is continued until each region can be approximated by a desired parameter so that the error be small enough in each region. In general, each region is an n-gon n where 3 < n < 8 . This method has short coding and decoding times. The coder is tree-structured, thus it is suitable for progressive Image coding.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 199

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

FARNOUSH R. | ZAR PAK B.

Issue Info: 
  • Year: 

    2008
  • Volume: 

    19
  • Issue: 

    1-2
  • Pages: 

    29-32
Measures: 
  • Citations: 

    0
  • Views: 

    994
  • Downloads: 

    1028
Abstract: 

Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an Image. The parameters of the model were estimated by EM-algorithm.In addition pixel labeling corresponded to each pixel of true Image was made by Bayes rule. In fact, a new numerically method was introduced for finding the maximum a posterior estimation by using EM-algorithm and Gaussians mixture distribution. In this algorithm, we were made a sequence of priors; posteriors were made and then converged to a posterior probability that is called the reference posterior probability. Maximum a posterior estimated can determine by the reference posterior probability which can make labeled Image. This labeled Image shows our segmented Image with reduced noises. We presented this method in several experiments.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 994

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1028 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

ZHOU B. | XIAO LI Y. | LIU R.

Issue Info: 
  • Year: 

    2010
  • Volume: 

    9
  • Issue: 

    5
  • Pages: 

    1049-1052
Measures: 
  • Citations: 

    1
  • Views: 

    151
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 151

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button